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ABSTRACT

_-ecent evidence has shown that the NASA/Lewis

Ice Accretion Model, LEWICE, does not predict accurate

ice shapes for certain glaze ice conditions. This paper will

present the methodology used to make a first attempt at

improving the ice accretion prediction in these regimes.

Importance is given to the correlations for heat transfer

coefficient and ice density, as well as runback flow, selec-

tion of the transition point, flow field resolution, and drop-

let trajectory models. Further improvements and

refinement of these modules will be performed once tests
in NASA's Icing Research Tunnel, scheduled for 1993, are

completed.
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Heat capacity (J/kg'K)

Vapor pressure (N/m 2)
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evaporation
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Abbreviations:

LEWICE/P

LEW ICE/1 BL

LEWlCE/E

Original Two-Dimensional Potential

Flow Ice Accretion Program

Ice Accretion Program Using Potential

Flog, with Interactive Boundary Layer

Euler Flow Ice Accretion Program

LEWICE/NS

LEWICE/I"

LEWICE/FNG

Navi6r-Slokcs Flow Ice Accretion

Program

LEWICE/P Program with Conduction
and Electrothermal Deicer Modelling

Capability

LEWICE/P Program with Improved Ice

Physics Model

INTRODUCTION
_dg-----_

,_ecently, several advancements have been made

in the development of ice accretion theory. It is the pur-

pose of this report to incorporate these advancements into
the NASA/LEWIS ice accretion program LEWICE t. Spe-

cifically, attention is focused in two areas. First, a method-

ology is formulated for predicting the 'sand-grain'

roughness model which controls transition and the level of
convective heat transfer. Second, a new formulation is

developed for modelling runback water flow. The previous

methodology, originally formulated by Messinger 2, results
in a constant flow of runback water at the surface for glaze

ice conditions. However, based on the evidence presented

by Olsen 3 and more recently by Hansman +, it has been
shown that there is a short transient at work in the ice

accretion process, and that past this initial phase, much

less surface water flow occurs. This paper will present a

new runback model in an attempt at modelling this initial
transient.

The first section of this paper will be to present
enhancements in the LEWICE model based on previous

experimental data and theoretical advancements devel-

oped by other researchers. It was found that although sev-
eral researchers had made specific improvements to the

program, or had performed tests for the purpose of

improving this program, a single code which combined all

of these previous achievements did not exist. Specifically,

improvements made by Cebeci 5 in fluid flow, Rios 6 in ice

density, PoinsattC in heal transfer, Hansman 4 and

Yamaguchi 8 in transition modelling, AI-KhaliP in runback

flow and Wright t° in heat conduction were incorporated

into this program.
The second section of this paper will be to develop

equations which model the transient freezing of a single

drop of water on the airfoil surface. The equations for the

geometry of a drop will also be developed. Also, the flow

rate of a liquid film will be determined using this analysis,

following the methodology developed by A1-Khalil 9. As

droplets freeze, they will form a roughcned surface much
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more rough than the original airfoil surface and much

rougher than typical 'sand-grain" roughness. It is Ihe pur-

pose of this section to make a first attempt at predicting a

characteristic roughness height based on a limiting case

analysis of surface tension controlled water flow.

IMPROVEMENTS TO THE MODEL

Flow Field Resolution

The potential flow solution for iced geometries can be

very irregular, resulting in several calculated stagnation

points. Since the integral boundary layer technique used in
LEWICE needs a single stagnation point to start at, the cal-

culated iced geometry is smoothed so that only one stag-

nation point is calculated. The technique used in the
current version was developed by Cebeci 5. He calculates a

smoothed 'pseudo-surface' which is used only in the cal-
culation of the flow field. In the current model, the flow
solution was smoothed instead of the airfoil coordinates.

The potential flow code is preferred for the develop-

ment of a new ice accretion theory over more complex,
Euler, or Navier-Stokes codes available due to the faster
execution time. As this ice accretion module become fur-

ther developed, an analysis will be performed to determine

the necessary complexity of the flow solution.

Droplet Trajectories

The enhancements made to the droplet trajectory

algorithm are primarily concerned with the speed of the

calculation. Since approximately 80% of the computa-

tional time in LEWICE is spent calculating droplet trajec-

tories, methods of speeding up this module were
investigated.

Three improvements were made in this area. First, the

initial point for calculation was started at a y-location

determined by the angle of allack of the flow, not parallel

to the airfoil. This results in fewer trajectories needed to

find the desired range. Even at an angle of attack of 4", the

program needs to compute only three trajectories to find

the desired range, whereas previously it required six.

Second, during the determination of the impingement

limits, the next starting point for a new trajectory was

determined using a 'weighting" factor. Previously. the next

starting point for a new trajectory was halfway between a

missed trajectory and a trajectory which hit the surface.

Currently, the next trajectory is started between these two

limits, however, its starting location is "weighted" such

thai the resulting Ir, UL_tory will travel closer IO the top (or
bottom) of Ihe airfoil. This resulls in fewer trajectories

needed to find file impingement limils. This technique has

not been as successful at decreasing the number of Irajec-

tortes. Usually only one or two trajectories out of twelve

are saved using this technique.

Finally, methods were investigated to reduce the num-

ber of air velocities needed. During each time step of each

trajectory, the algorithm performs a prediclor-corrector

iteration to solve the integration of the non-linear momen-

tum equation. For this integration, the program requires

the air velocity at that location. Previously, this has been

found by summing the contribution from each panel in the

potential flow solution. So far, Iwo methods have been

attempted to simplify this cumbersome computation.

First, the air velocity was simply lagged one time

step. Thus for each iteration in the predictor-corrector, the

same value of the air velocity was used. This assumption

is valid, as the difference in position between predictor
and corrector is much smaller than the distance between

the drop position at time step n and its position at time step
n + 1. This modification in itself can decrease the compu-

tation time by a factor of three and Ihus merits further

investigation in three-dimensional codes as well as more

complex two-dimensional codes.

Second, instead of calculaling the air velocity for each

step in the trajectory routine, velocities were calculated on

an off-body rectangular grid and an interpolation scheme

was used to find values in between grid points. This results
in fewer air velocities which need to be calculated. This

method also reduced the computation time, although the

improvement is not as great if a fine mesh is used. This
happens because the number of panels is small in a two-

dimensional code. Further investigation is warranted in
three dimensional codes for this method.

Finally. one correction was made to the droplet trajec-

tory algorithm to increase iLs accuracy. This correction is
concerned with the "d-shift" used in LEi_7CE. When cal-

culating the off-body air velocity at any I(x:ation using a

potential flow solution, the answer will not be reliable if

Ihe point lies too close to any given panel. "It)alleviate this

problem, LEWICE creates a set of coordinales which lie a
distance "d-shift" normal from ttle surface.

Previously. when a drop hits the enlarged surface, it
was treated as if it hit the actual surface. This results in an

over prediction of tile collection efficiency because drops

which might impinge Ihc larger "d-shifted" surface might

not hit the actual surface. Currently, the drops are allowed

to proceed until they impinge the acltUll surface. However,
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if the distance between the drop and a given panel is less

than 'd-shift', the air velocity which is used will be inter-

polated from the value at a location 'd-shift' from the

panel and the value at the panel which is provided from

the potential flow solution. This is illustrated in Figure 1.

'd-shift' Panel

__,d_shift

Surface Panel !
I

Figure 1. Location of Drop Within 'D-Shift' of Surface

Heat Transfer Coefficient

The heat transfer coefficient in LEWICE is controlled

via the skin-friction which in turn is controlled by the

equivalent sand-grain roughness. In glaze ice conditions,

when all of the ice does not freeze upon impact, the local
freezing rate can be greatly controlled by the heat transfer

coefficienL The current model still relys on the sand-grain

roughness; however, the correlation itself has been cor-

rected to more closely reflect heat transfer coefficient data

taken by Poinsatte _ using the NASA/Lewis Twin Otter

Research Aircraft and using the Icing Research Tunnel.

In that study, hemispherical elements were glued onto
a NACA0012 airfoil with heater elements in the airfoil.

The heaters were kept at a constant temperature of 60 °F

and the necessary heat supplied was recorded for various

Reynolds numbers and angles of attack. Four different

roughness patterns, including a clean airfoil, were used in

this study.
These tests are not considered ideal for use in

LEWICE, as it does not use actual ice roughness. How-

ever, they provide a means of modifying the correlation

for large sand grain roughnesses. Since the element

heights were 1 mm, a sand grain roughness of 1 mm was

used for comparison with the LEWICE correlation.
LEWICE gready overpredicted the heat transfer coefficient

using this value. Three corrections were made which

resulted in better agreement with the experimental results.

First, the temperature dependance of both the thermal

conductivity and viscosity were corrected. Based on what

appears to be a typographical mistake in the coding, the
temperature dependance of these variables was too high.

Second, the computation of the transition Reynolds

number was changed when the roughness height exceeds

the boundary layer thickness. Transition will still occur

when the Reynolds number based on roughness exceeds

600. However, if the roughness height exceeds the bound-

ary layer thickness, the definition of the Reynolds number

is changed. Previously, the velocity was set to the velocity

at distance 5, i.e., the potential flow solution. The rough-
hess height was still used in the calculation. Currently, the

routine uses the boundary layer thickness instead of the

roughness height in the Reynolds number calculation.

v,k,
Previous Definition: Res, = _ for iq > _i (1)

V6_i
= for lq > _i (2)Current Definition: Re k "o

Third, the turbulent roughness value was calculated

by the roughness height model described later in this
paper. Any roughness in excess of the turbulent boundary

layer thickness is treated as follows:

1) The roughness height up to the boundary layer

thickness directly affects the convective heat transfer as a

sand-grain roughness.

2) The amount beyond this level affects the convec-
tive heat transfer only due to the flow acceleration over

this protuberance which can be calculated by the flow
solver.

Using these corrections, much better agreement was

achieved with Poinsatte's experimental data. Future tests

are planned which will attempt to measure heat transfer

coefficient on plastic ice models.

Ice Density

The ice density correlation used in LEWICE was

developed by Macklin n using tests on rotating cylinders.

The Macklin correlation is based on three parameters: the

local surface temperature, the volume median droplet

diameter, and the droplet impact velocity. This correlation
is believed to be inaccurate because it is based on a param-

eter which was not measured in the test (droplet impact

velocity). Macklin calculated the impact velocity from

measured variables using a very simplified analysis.

4
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Rios" pre,_nted an alternative ice density correlalion

based on tests performed by Jones t-'.These legls were also

performed on rotating cylinders and hence are not ideal for

ice prediction on airfoils, it is based on five parameters: air

temperature, air velocity, liquid water content, volumetric

mean droplet diameter, and cylinder diameter. This rela-

tionship can, at best. only provide the average ice density

as it is ba_! on ambient parameters.

The implementation in LEWICE assumes that the

functional form of the correlation can be applied at each

chord location using the local equivalent to the ambient

variable. The surface temperature, collection efficiency,
and local radius of curvature are substituted into the corre-

lation. This results in a chordwise variation of ice density

for most conditions, with the higher glaze ice density at

the leading edge, progressing to lower rime values down-

stream. The form of this correlation is given below.

111(Pice) = -0.15 × ( 1 + 6043S "-265)

where

(3)

d,,,vd0.82,xV0"59x. (_LWC) 0"21 "
S = (4)

D0.411
Ioc X (-rair) 0"23

Future tests are planned which will measure the local den-

sity on airfoil ice shapes to verify this correlation.

Runback Water Flow

The methodology used in LEWICE assumes that

water which impinges and does not freeze will automati-

cally flow into the next control volume. This can result in

relatively large water flow rates on the surface for glaze

ice conditions. These large flow rates however are not sup-
ported by qualitative assessment of ice accretion tests or

by close up videos.

The current model uses a formulation derived by AI-
KhaliP for runback water flow. In his model, water flow is

assumed to be shear driven by the air flow. His formula-

tion solved for the complex, two-dimensional flow of sur-

face water, typically using engine inlets equipped with an

anti-icer. Since LEWICE is a two-dimensional flow pro-
gram the airfoil surface is one-dimensional, hence the the-

ory developed by AI-Khalil9 can be simplified in this

paper.

This model has heen further modified by assuming
that the "wetness factor" described by AI-Khalil can be

independently determined by the amoun! a drop spreads

upon impact. This is determined from experimental data
by Macklin _ and by Hansman 4 who measured the contact

angle of the drop from which the spread factor can be
determined. Additional tests are needed to confirm the

relationship between contact angle and the ambient param-
eters.

Additionally. the water is allowed to stagnate if the
force of the flow is found to be less than the surface ten-

sion force. This model has the advantage of modelling

standing water in each control volume, and should be
accurate for modelling separation regions in Navi6r-

Stokes flow, since water will not flow into a separation

region.

Heat Conduction

Wrighfl ° modelled the two-dimensional transient con-

duction in an airfoil with ice accretion for the application

of modelling an electrothermal deicer. When all internal

heat sources are turned off, this program will predict the
ice accretion on an airfoil with conduction effects. How-

ever, this simplified application can be handled without the

additional computational burden. An analytic solution is

available which gives a reasonable approximation for this

case. Locally, at each chordwise location, the heat conduc-

tion can be modelled using a semi-infinite fiat plate

assumption where the airfoil surface at time = 0 is sud-

denly raised from the recovery temperature to the icing

temperature (normally 0"C in glaze ice conditions). This

assumption has been verified by performing parameter

runs using the full conduction model. Since the airfoil skin

thickness is not infinite, this assumption can remain in

effect only until the heat has penetrated through the airfoil

skin. The parameter used to measure this is termed the

penetration thickness. When the penetration thickness

equals the airfoil thickness, the heat has penetrated

through the airfoil skin. At this point in time, the conduc-
tive flux at the surface is small enough to be ignored.

Liquid Water Content

The physical evidence obtained from tests performed

so far show that the final ice shape is greatly dependant

upon the physics during the first few seconds. It is felt that

a large amount of the repeatability problems in generating

experimental ice shapes stems from an inability to exactly

match, either in flight or in the IRT, the exact variation in

conditions. This is especially true during this initial time

frame. It has been established in the IRT that liquid water



GLAZE ICE ACCRETION MODEL

content will increase from 0 to the desired LWC value

within about 20 sec. The program currenlly is capable of

modelling this transient linearly. At presem, no parametric
studies have been performed to determine the effect of dif-

ferent LWC transients on the final ice shape, nor have any
flight cases been evaluated for this purpose.

GLAZE ICE ACCRETION MODEL

As staled earlier, the experimental evidence as shown

by Olsen 3 and Hansman 4 clearly show that the current

methodology for ice accretion is incorrect when applied to

glaze ice. However, much of this data is qualitative in
nature, which makes it difficult to incorporate into a com-

puter model. The following analysis presents a first step at

modelling some of these phenomena. Where quantitative

data exists, this model will be compared to these experi-
ments.

Bead Geometry

Assume that as a spherical droplet of water impinges
a locally fiat surface and deforms, it retains a spherical

form with a section cut from the bottom (see Figure 2).

O-63-
Figure 2. Dispersement of Water Droplet

Furthermore, assume that in the Short time it takes this

drop to stabilize that the volume remains constant. This

assumes that evaporation losses are small and that little of

the ice has frozen. As it is assumed the drop takes on the

order of lif t sec. to stabilize at any given contact angle,
these assumptions are reasonable. This time scale is

derived by dividing the drop diameter by the drop velocity.

This volume at any given angle can be determined as the

volume of a sphere with a conical section cut from it plus

the volume of a fiat-bottomed cone with an equal angle.
This is represented in Figure 3.

r

Figure 3. Representation of Partial Volume of Sphere

This volume can be represented mathematically by
adding the volume of a sphere with a conical section cut

out plus the volume of a fiat-bottomed circular cross-sec-

tion cone. The first of these volumes is found by integrat-
ing

RlCx

V= _f frcr2sinOsin,d_dOdr (5,
OOct

If this equation were integrated from 0 to rc instead of cz to

re, the equation for the volume of a sphere is obtained.

The volume of a cone is given by

2

re = _r h (6)

or by writing this in terms of the sphere diameter R

(the hypotenuse of the triangle with sides h and r),

717

V = 3 R3 (COS_- (COSCI) 3)

The total volume of this section is then

(7)

7C 3

re = -_R (2 + 3cosct- (costx) 3) (8)

where again R is the radius of the sphere, and _ is the

angle at which the sphere is cut off (see Figure 3 above).

For cx > n/2, the segment of the sphere which contains

the mass of the drop is less than half of the total volume of

that sphere. The volume can be represented by subtracting

the above volume from the total volume. This yields

3

V = jR (2-3cos0+ (cos0) 3) (9)
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However, this equation gives the volume in lerms of

an angle which is equal to n - a. To be consistent, the

angle can then be changed back to the same point as the
above volume (see Figure 4).

Figure 4. Sphere Divided into Separate Regions

Performing this substitution yields

V = 3R3(2 + 3cosa- (cosct) 3) (10)

which is the same equation obtained before for a < r_/2,

hence the above equation describes the deforming sphere

• at any angle. It is assumed that as more drops impinge or

as drops coalesce that only the mass is changed and that
the geometry remains the same.

Energy Equation

The energy equation for a given drop at known con-

tact angle is found by making the following assumptions:

1) No pan of the drop goes below freezing until the

entire drop is frozen, hence T.,,f = T,,,,;
2) Conduction heat loss and sensible heat transfer

occurs only at the interface between the surface and the

drop;

3) Evaporation and convection occurs at the water/air
interface;

4) Ice forms at the bottom surface of the drop: and.
5) The thermal properties of the solid surface can be

found by adding the thermal resislances of each layer
(including the ice) in a composile struclure.

Following the derivation of WrighP °. the energy bal-

ance on an individual drop is given by

_i), 1-k( + h_ (T,,,.- T,,,) + 2R..V_
. =1"I

L,M .hc Te

+Rcp,(r_- r) +

= R.Z_N/ (]1)

T,, represents the recovery temperature, as defined by
Schlichting t4.

However, this analysis does not account for the differ-

ence in area between the icing surface (which is presumed
fiat) and the surface area of the bead. Furthermore, it is

more convenient for the current analysis to replace the

accretion rate R,Nf as p.db/dt, where instead of using the

freezing fraction, the increasing thickness of the ice db/dt

is used instead. If A,/A, represents the ratio of the top sur-

face area to the fiat surface area, the energy equation
becomes

_y A_ I 2-k( )y=o+h_(T,. -T,.)_-+}RwV®

+ RwCv, (T - T,,) L_MwhcA' T,
. + PoCp,A s (ee-e,_)

db

= PsL/_ (12)

Since the drop is very small compared to the thickness
of the surface, and since the drop temperature can be

assumed to be close to T.._, until it freezes completely, the

heat loss into the surface can be expressed as the analytic

solution of heating a semi-infinite slab, hence

-k_y y=o- k(T,ec-Tm) (13)

where v is used as the thermal diffusivity in order to avoid

confusion with the angle a. To simplify future equations,

the energy equation is rewritten in terms of a temperature

difference times an effective h for that term. This yields

i

7
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T 0.5 Ai

hco,,a(A Trec) ( t) + hc (A Trec + A Te,ap) A---*

+h,,.,(ATr,_+AT,_ ) L db= P, :t_dt
(14)

where

k
hco.,, - ,--- (lS)

4rcvr

h,.,.s = R..,Cp, (16)

A Tr. c = T,,.- Tr. ,. (18)

AT,.., L'Mw 2 T.- (e.,- e,.T) (19)
"m

P aM aCp.._

and where _ = representative time scale.

The maximum value of the rate of freezing will occur

when the rate of freezing above exceeds the rate of

impingement, which is

db Rw
- (20)

dt Ps

The amount of water on the surface at any time can be

found by subtracting the rate of ice formation from the rate

of impingement and integrating. Note that since the quan-

tity R, is defined in terms of the liquid water content, this

value is not necessarily constant.

The following geometric parameters can now be

defined as follows. Let b,v be defined the average height of
the bead, s is the diameter of the spread bead, and b is the

bead height, as shown in Figure 5.

¢ict ]_t
( )

$

Figure 5. Geometry of Water/Ice Bead

From simple trigonometry relations.

s = 2Rsin0 (21)

b = R(! - cos0) (22)

where 0 is the contact angle, which is defined as the tan-

gent angle of the drop where it intersects the surface. No_e

that O= n - 5. The volume of the bead can be expressed as

the volume of a cylinder with diameter s and height b,, or

as the partial volume of a sphere as before. Equating these

two yields

2

_s b,,, = rcR 3(2- cos0 +(cosO) 3) (23)

Substituting the relations for b and s into this expression
yields

(2 +cosO)
bar = b (1 + cosO) (24)

The area ratio is the ratio of the exposed surface area
to the area at the base.

A_ 2_R 2 (1 - cos0)

A, rcR2 (1- cos0) (i + cos0)

2

(1 + cos0)

hence the total ice accretion rate becomes

(25)

2
hc (A Tree + A "f* "t

' ev,_,J ( 1 + cos0)

T 0.5

+heo._(AT, e_) (_) + h...,(A T... + A T..}

(26)

Water Flow Criteria

At a certain point, if enough water forms on the sur-
face, it will form a continuous film and start to flow. This

will happen when the shear force on the water overcomes
the surface tension forces. From AI-KhaliP.

(27)
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. ÷

where mf is the mass per unit span, xf is the shear stress, v

is the kinematic viscosity, and F is the wetness factor, the

fraction of the surface covered with water. The velocity of

the water flow is given by

v/=  -fffb (28)

The force per unit span is obtained by multiplying the

velocity by the mass flow rate to get

dm {F_f _2 3

Ff,,,., = v/._ = ptt_--fffJ b (29)

This quantity has the same units as surface tension, a.

When this quantity is greater than the surface tension, the

bead will flow. Performing this operation yields the flow
criteria for water runback

1

( 4ola2 1b > t.O-_--2x2 (30)

where o = surface tension.

Additionally, the flow can be affected by gravitational

forces. The method in which gravity is modeled is to

assume that there is a limiting drop height above which the

drop becomes unstable at that contact angle and starts to

flow. If the drops are small, they retain their shape, but if

more water is added, the drop will reach a mass beyond

which flow will occur. This will happen when

mgbcos_ > 6A O1)

where V is the local angle the airfoil makes with a
horizontal line. By substituting the proper geometric

equivalents,

rcc ( 1 - cos 0)b > pgcos_ (32)

One of the unknown parameters in the above develop-

ment is the wetness factor, F (see equation 30). The fol-

lowing strategy will be adopted here for calculating this

variable. There is a quantity called the 'spread factor',
which was defined by Macklin t3 as the ratio of the diame-

ter of the spread drop to the initial drop diameter, and is

determined by equating the expresston for the volume of a

spread drop with the original spherical volume,

4

3R3(2+cos0)(l-cos0) 2 = 3nR D 1331

Substituting the previous expression for the spread

drop diameter s into this equation yields

1

s _ i 4sin0(l-cos0) 1_S - 2Ro (2 + cos0) (l--c0s0) (34)

According to Macklin j3' a surface is considered com-

pletely wetted when the contact angle is below 10". The
wetness factor can then be defined as the ratio of the

spread factor at the contact angle 0 to the spread factor at

an angle of 10", with an upper fimii of F = 1.

As a check on the previous equation, both Macklin _3

and Hansman 4 performed experiments to determine the

variation of drop geometry with temperature. Hansman

measured the contact angle from close-up movies while

Macklin measured the diameter of individual frozen drops

with a micrometer, then divided by the known diameter of

the incoming drops to obtain the 'spread factor'. A com-

parison of the data by these two researchers is presented
below.
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Figure 6. Comparison of Experimental "Spread Faclor'

The upper line in the above plot gives the largest

spread factor for thai temperature while the lower line
gives the smallest value for that temperature. The differ-

ence between the upper and lower values represents the
scatter in the data. The theoretical lower limit shown in

this plot is computed by inputting the value for a hemi-

spherical bead which is 0 = re/2. The agreement between

the two tests show the same trends, however Ix_th parame-
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lers are difficult to measure accurately, as shown by the
data SCalier.

Computational Strategy

The bead height model used in this paper only identi-
fies the maximum possible roughness level that can be

obtained. These maximum values are based on physical

criteria. The actual roughness of the surface is unknown,

as it could be less than these values. For this analysis, the

roughness heights used was the smallest of these maxi-
mums. These criteria are as follows:

1) Roughness height can not exceed the ice thickness:

2) Water height can not exceed the height needed to

flow based on the shear forces exceeding the
surface tension forces:

3) Water height can not exceed the height needed to

flow based on the gravitational forces exceeding
the surface tension forces:

4) For both 2) and 3) the total bead height is

determined using the water height and the freezing
fraction;

5) Heat transfer coefficients are affected by bead

height only up !o the boundary layer thickness,
whether this is for transition or for turbulent

values. The additional effect of heat transfer due to

these beads is presumed to be handled by increased
velocity in the flow solution.

The computational strategy for glaze ice accretion is
as follows:

1) using a small time step 1, water is allowed to

impinge upon the airfoil;

2) the amount frozen, the liquid bead height and

mnback water flow (if any) are determined from
the above equations:

3) the roughness height is set equal to the bead
height;

4) boundary layer quantities are recomputed to
determine new values for heat transfer

coefficient;

5) time is incremented;

6) if the flow is undisturbed 2 by the ice shape, return

to step 1);

7) if the flow is changed, compute new flow field

i. The size of this step needed to ensure accuracy has not yet
been established

2. The criteria for this has not been established.

8)
and trajectories, then return to step 1);

if the total simulation time has been reached, stop
the simulation.

RESULTS AND DISCUSSION

The model presented in this paper has an implied
assumption that the ice accretion process as a whole will

be modeled better when each of the sub-models presented

is accurate. Therefore, the first step in verifying this model
will be to verify, if possible, the sub-model. However, for

many of these sub-models, this can not be done as yet.
Therefore, only qualitative assessments can be made as to

their improvement. Except where otherwise noted, the

cases used to present the capabilities of the model are

taken from experimental runs by Shin tS. Most plots were

obtained using the following conditions: V** = 230 mph;
T O= 28"F; LWC = 0.55 g/m3; MVD = 20 l.tm; t = 7 min; ct
= 4 °

Flow Field Resolution

Figure 7 shows a comparison of the output from the
potential flow solver with the smoothed values after six

minutes of ice accretion. Even though this solution is more

uniform, it does not serve its full purpose of determining
the stagnation point for the boundary layer routine. The

stagnation point is determined by picking the point or

points where the velocity changes sign, which still hap-

pens more than once. At this point, the progran_ selects the

new stagnation point as the one which is closest to the old
stagnation point.

Droplet Trajectories

There were several modifications made to the droplet
trajectory routine. Figure 8 shows the optimization of the

range routine. For this particular case, placing the first x,y
, point at an angle tx below the airfoil results in three fewer

trajectories.

Figure 9 shows the effect of using a grid-based
scheme to interpolate velocities. As can be seen in this

plot, there is an insignificant difference in the path of the

trajectory using this routine. However, the computational

savings in 2D were also minimal. The use of this approxi-

mation will be more beneficial for 3D algorithms.

Figure 10 illustrates the approximation made when

off-body air velocities are calculated only at the start of the

10
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lime step. This plot shows the x,y location of the drop al

lime n and at time n+l every time the velocity routine is

called. Although it does not show well on this plot, the

velocity routine is called six times at lime n and eight

limes at time n+l. Currently, it is called once for each

location. Again, there is no change in the trajeett_cy of the
drop. As the Iocalions are so close, their individual loca-

tions can not be seen on the plot.

Figure 11 shows the effect on collection efficiency
using the interpolation procedure within "d-shih' of the

surface. These results also incorporate the approximations
described above. As can be seen from this plot, the effect

of using different 'd-shifts' has been greatly minimized.

Figure 12 shows the difference in the 7 minute ice shape

and the experimental comparison. Again, very minimal

difference in ice shape prediction is seen. By contrast, Fig-

ure 13 shows the variation in predicted ice shape using the
same two 'd-shifts'.

Figure 14 shows the variation in collection efficiency
with time. Qualitatively, this result appears correct. The
horns collect more water than the same location on the

clean airfoil, while fewer drops collect at the stagnation

point. However, no experimental validation of the quanti-

tative values have been made, except for a clean airfoil.

This could be a large source of the error in the predicted
results.

Heat Transfer Coefficient

Figure 15 shows a sample comparison of both the cur-
rent correlation and the previous correlation with the

experimental data. As can be seen in this plot, much better

agreement is achieved using the corrections described ear-

lier. Since this experiment had only metal roughness ele-

ments and not ice, the bead height is known. This height is

used unless it exceeds the boundary layer in either the

laminar or turbulent regimes. This has the effect of moving
transition downstream. Assuming thai roughness levels

exceeding the turbulent boundary layer can nol be mea-

sured by the current correlation produced heat transfer lev-

els approaching that of the experimental data.

Heat Conduction

Figure 16 shows a comparison between the approxi-

mate equation used for heat los._s by conduction and the

computational heal losses by conduction using LEIVICE/T.

Good agreement is shown, validating that this approxima-

tion is reasonably accurate for including conduction

effects in ice accretion. The variation in the computational

n:sults are due to the fact that the heat conduction program

is set up to analyze electrothermal heaters which will pro-
duce heal fluxes two orders of magnitude greater than
these levels. Hence the truncation of the linite-difference

scheme comes into play for the_ very low heat flux levels.

Bead Height Model

Figure 17 shows the predicted maximum bead heights

which are used as roughness heights in the program for

two different time steps. The initial values vary gradually
between 0.1 mm and 0.8 mm, while at l=360 sec. the vari-

ation is much more irregular. This is due to the irregularily
in the potential flow solution. The flow field now has con-

trol over not only the bead height, but the runback flow as

well. This advancement will hopefully allow belier flow

solvers, such as Navitr-Stokes to improve their ice accre-

fort prediction much more so than a potential flow solver

because the potential flow solver is not accurately predict-

ing the flow behavior for glaze ice shapes.

Ice Density

Figure 18 shows an example of the chordwise density

which can be achieved using the current correlation. This

case was run using a total temperature of -15'F instead of

the 28"F temperature used for the other cases. This change
was performed because ice density did not vary for the

very warm glaze condition ran earlier. This is supported by

both Macklin's and Jones's data which give an average ice
densily approaching the glaze ice value as temperature

increases. Even though this is a pure rime case, much of

the ice which forms has a density within 10% of the glaze

value. This is why rime ice shapes have in the past com-

pared well with experiments even though the ice shape

formed in the experiment may have had a lower density.

Ice Accretion Comparison

Figure 19 shows a comparison between the predicted

ice shape and the experimental ice shape presented by

Shin _5. He compared experimental ice shapes with those
predicted by LEW1CE/1BL. Most of these predictions are

very good. The particular case chosen for comparison here

was selected because the ice shape predicted by Shin t5

using LEWICE/IBL did not match the experimental data.

11



CONCLUSIONS

The program created for this paper has been called
LEWICE/TNG (LEWICE: The Next Generation) for com-

parison with previous models. Currently, the overall ice

prediction with LEWICEITNG is not very much improved

over LEWICE/P as shown in Fig. 20. It should be noted

that for this comparison, a roughness height of .5 mm and
a 'd-shift' of 2% of the chord was used in LEWICEIP.

The main improvement of the current model is in the

reduced effect of these immeasurable parameters on the

solution. Figure 13 showed the variation of ice shape pre-

diction by LEWICE/P using 'd-shifts' of 2% and 4% of

chord, while Fig. 21 shows the effect of varying roughness

for the values of 0.1 ram, 0.5 ram, and 1.0 mm using

LEWICE/P. By contrast, the same exercise was performed

using LEWICE/TNG. These results are shown in Figs. 21

and 22. As can be seen in these plots, much less variation

in ice shape prediction is exhibited using LEWICE/TNG.
The current variation due to 'd-shift' is due to the fact that

the velocity is not changing linearly near the surface,

hence using different 'd-shifts' in the interpolation proce-

dure causes a slight difference in the collection efficiency,

especially near the impingement limits. Since LEWICE/

TNG overrides the roughness level input and uses the cri-

teria described earlier, the input roughness has almost no
effect on the solution. The difference shown is because if

there is ice forming at a specific location at time step n+l

when no ice or water was present at time step n, then the

model does not have a roughness value available. Until
this loophole is closed, the input roughness is used in this

region, hence the slight difference at the icing limits.

Future Work

The model used for predicting a roughness height is in

the early stages of development and needs to be better
defined. The main benefit of this model is that it allows the

flow solution to exert greater control over the ice accretion

prediction. This may not be a beneficial feature when

using potential flow, as the solution for iced airfoils is very

irregular. An attempt will be made to incorporate this new

algorithm into the LEWICE/NS program. The geometry

modification routines will also be examined. Recently,

Hansman 4 has suggested alternative ice growth mecha-

nisms which need to be explored.

After closely examining the close-up videos, one

physical effect stands out which is not well predicted by

this program. This is in the area of collection efficiency

prediction. Experimental work in quantifying collection

efficiency has always been performed on clean airfoils.

Since potential flow programs are reasonably reliable for

this situation, the collection efficiency should he well pre-

dicted. In glaze conditions where horns are produced and

leading edge separation may occur, the collection effi-

ciency may not be well predicted. No experimental data is

yet available to confirm this, so an analysis will be per-

formed using Navidr-Stokes and potential flow programs
to identify the difference in prediction of collection effi-

ciency. The ice shape prediction shown in Figure 19 has
approximately 15% more ice than the experimental ice

shape tracing. However, in the experiment, all of the water

which impinges will freeze somewhere on the airfoil

(except for a very small amount of evaporation). In the

program, there is a large amount of runback water flow off
the airfoil. If all of this runback water were to freeze, there

would be approximately twice as much ice on the airfoil.

This means that impingement levels for horn ice shapes is

well overpredicted by a potential flow program.

CONCLUSIONS

Several additional physics of ice accretion were added

to the existing model. Slight improvement has been made

to the ice prediction capabilities as a result. The major

improvement has been a marked decrease in the sensitivity

of the program to the input values for 'sand-grain' rough-
ness and for 'd-shift'. Optimization of the droplet trajec-

tory routines results in a 30%decrease in the overall

computational time.
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